If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-149y-102=0
a = 6; b = -149; c = -102;
Δ = b2-4ac
Δ = -1492-4·6·(-102)
Δ = 24649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{24649}=157$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-149)-157}{2*6}=\frac{-8}{12} =-2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-149)+157}{2*6}=\frac{306}{12} =25+1/2 $
| 17x+156=360 | | -15h=15-16h | | 11b+3=47 | | 2(y+7)+4y=8 | | 46÷b=2 | | 28-u=6u | | 2x+172=360 | | 12w-7=10-1 | | 2x+228=360 | | 14=-2w+6(w-3) | | 81-7x=2x | | -6.2+16.9u=-0.61+12.9u-18.79 | | 16=9p-8+8 | | 7x-126=5x+10 | | 32x+1=15 | | ?x?x?=30 | | 4(1/4+x)=10/5 | | 2x-23=37+6x | | -6u+4(u+8)=30 | | D=-16t2+8t | | 10+1d=8+18 | | 6x-2(2x-6)=8 | | -16+4x=x+5 | | (x+3)-2x=15 | | 5/8=a/2+1/8 | | 10r+84=4 | | 5(x-3=15 | | 8x+7-3x=-8 | | -47-3x=13=-9x | | -19=5x+4(x+2) | | -19-6x=41-2x | | 7=9x=25 |